
Regulated Isomorphic Temporal
Architecture

January 26, 2000

Version 2.0

Author Information:

Richard Wallace
INFORMATION CENTERED NETWORK SOLUTIONS

1ABSTRACT... 1

2ARCHITECTURE.. 1

2.1EVENT THEORY... 1
2.2EVENT MODEL...2

2.2.1Condition–Event Matrix Relationship..3
2.2.2Spike-Event Consumers.. 4
2.2.3Set-At Event Consumers... 4
2.2.4Transitional Event Consumers... 4
2.2.5Event producers..5

2.3EVENT ENGINE COMPONENTS...5
2.3.1User Interface... 6
2.3.2Error Window... 10
2.3.3Guard and Condition Preprocessor... 11
2.3.4Guard and Condition Matrix Control.. 12
2.3.5Guard and Condition Include Files..13

3USAGE... 13

3.1DESIGN OF AN EXAMPLE EVENT SYSTEM...14
3.2ANALYSIS OF AN EXAMPLE EVENT SYSTEM..14

FIGURE 1 CANONICAL EVENT FORMS.. 1

FIGURE 2 EVENT STIMULUS FLOW.. 2

FIGURE 3 EVENT GENOTYPE.. 3

FIGURE 4 EVENT ENGINE TOP LEVEL SOFTWARE BLOCK DIAGRAM... 5

FIGURE 5 EVENT MANAGER MAIN WINDOW..6

FIGURE 6 CONDITION VECTOR TAB.. 7

FIGURE 7 CONDITION VECTOR TAB WITH CONDITION CODE... 8

FIGURE 8 FUNCTION EVALUATE_TIME()... 8

FIGURE 9 FUNCTION CREATE_TIME()... 9

FIGURE 10 FUNCTION GET_TIME()... 9

FIGURE 11 GUARD TAB... 10

FIGURE 12 EVENT MANAGER ERROR WINDOW...11

FIGURE 13 GUARD AND CONDITION PREPROCESSOR... 11

FIGURE 14 ANNOTATED COMMENTS...12

FIGURE 15 HASH COMMENTS...12

FIGURE 16 GUARD AND CONDITION MATRIX CONTROL..12

FIGURE 17 WRITE CONDITION-EVENT SOURCE FILES MODULE...13

FIGURE 18 USAGE DESIGN NOTATION...14

FIGURE 19 USAGE EXAMPLE EVENT SYSTEM.. 14

EQUATION 1 CONDITION-EVENT MATRIX...3

EQUATION 2 GUARD ELEMENTS... 3

EQUATION 3 CONDITION VECTOR... 3

EQUATION 4 RESULTANT CONJUNCTION.. 3

EQUATION 5 REALIZATION OF CONDITIONS AND OPERANDS... 3

EQUATION 6 SPIKE-EVENT PRECONDITION..4

EQUATION 7 SPIKE-EVENT POSTCONDITION... 4

EQUATION 8 SET-AT EVENT PRECONDITION..4

EQUATION 9 TRANSITIONAL EVENT PRECONDITION... 4

EQUATION 10 TRANSITIONAL EVENT POSTCONDITION...5

TABLE 1 EXAMPLE OF EVALUATE_TIME().. 9

TABLE 2 EXAMPLE EVENT SYSTEM 1.. 15

TABLE 3 EXAMPLE EVENT SYSTEM 2.. 15

TABLE 4 EXAMPLE EVENT SYSTEM 3.. 15

RECORD OF CHANGES

Change

Number

Date Brief Description Entered By

1 11/12/1999 Document creation. RMW
2 12/28/1999 Added detail for algorithms from Section 2.3 onward. Issued as V1.0. RMW
3 01/26/2000 Corrected Figure 2, added detail to text after Figure 11, added Section 3 and its subsections. Issued

as V2.0.
RMW

v

1 ABSTRACT
In an event driven system, there are two kinds of data. First is "information," as
it labels the data as having relevant importance to a computational process.
Second is "superfluous," as it labels the data as having no value to a
computational process. The importance of information to a computational
process is expressed as time– summation–, or delta–critical. Time–critical
information must reach a computational process at fixed delta times.
Summation–critical data is summed to form a value that triggers events. Delta–
critical data must be significantly different from its previous value in order to
trigger an event. By use of the conditional matrix vector evaluations, and the
guard matrix, it is possible to control events by time, summation, and delta
significance without generating superfluous data transmissions. This "data
driving" event service can drop network loading by order of magnitude by
reducing superfluous data transmissions.

2 ARCHITECTURE

2.1 Event Theory
Events occurring in any system follow the canonical event forms in Figure 1.

Spike Set-At

Transitional

Figure 1 Canonical Event Forms

The "spike", "set-at", and "transitional" forms are the canonical event forms. Each form occurs under some change
in time (∆t) applicable to the event space in which it occurs. The use of ∆t by these forms assumes that time is
infinitely divisible, countable, and continuously and monotonically increasing. Thus, any incremental units of
measurement are only sample points of the time continuum. Events may or may not have a "lifetime" associated with
their occurrence. An event's lifetime is defined by the semantic meaning of its latency of occurrence and its
subsequent observance. All events shall be discrete events.

The spike event form is a singular event that occurs at a ∆t of asymptotic zero. Events of this form are considered
periodic "heartbeat" events. This event form can be used for counted threshold limits, keep-alive notification, or
request for service. This event form can not be queued and has no lifetime.

The set-at event form is a permanent state change that has a long ∆t in the new state. This event form can be used for
one-time events. This event form has an infinite lifetime and can be queued.

The transitional event form occurs over some period of measurable ∆t and an event sensitive entity can perceive state
change. This event form is semantically dense as each sampling of ∆t can result in a different state. The semantic
meaning is compounded based on the frequency of state change and for how many sampling intervals of ∆t the state
remains constant. This event form has a limited lifetime. Queuing of this event form requires prioritized time-based
queuing that can be dynamically edited as higher priority events occur, or as queued events expire, or both.

These three event forms shall be used to describe how events are produced and consumed.

1

2.2 Event Model
All producers and consumers of events in a data driven event service will follow the following event model for the
canonical event forms.

For all events, given event E, condition C, evaluation matrices, guard G, and action A, Figure 2 illustrates the general
stimulus flow model. The model has as input one to N inputs to a precondition-event matrix (see Equation 1) that
causes an Action. The result of this action is input to a postcondition-event matrix (see Equation 1) that may chain
to a precondition-event matrix as the output of the postcondition-event matrix may be zero to N events. Events leave
the general stimulus flow model when they are fully consumed. At the point of consumption, an event becomes a
datum germane to the application controlled by events. Each condition–event matrix has one to many resultants.
The number of resultants is determined by the number of condition vectors (see Equation 3). Resultants are allowed
to be evaluated by conjunction (see Equation 4). This conjunction allows consolidation of many input events to one
event. For each of the canonical event forms a specific precondition and postcondition equation is used to evaluate
events in fidelity to their canonical form.

Precondition M
atrix

For each Pre-G
uard, evaluate

C
ondition(Event)

Action Post-condition M
atrix

For each Post-G
uard, evaluate

C
ondition(Event)

1 . . N 0 . . N

0 . . N

Each action
has a pre and

post
condition

Figure 2 Event Stimulus Flow

All events in a system are known events and are thus named by a universal unique identifier1 (UUID) used to vector
an event to the proper condition–evaluation matrix. Each vector (see Equation 3) is associated with a UUID. Each
condition–event matrix has the genotype shown in Equation 1, but each condition for each vector.

All events have the following genotype as shown in Figure 3 where the UUID identifies the event mapping to a
condition. The Variable Data part of the event genotype is defined by the application domain and is mapped to the
specific condition(s) that via the event UUID. The Variable Data value has a known format and is known prior to
construction of the condition(s) mapped to an event UUID. For spike events, no data is required, as the event itself
is the data.

UUIDVariable Data

Figure 3 Event Genotype

1 A universal unique identifier (UUID) is a concept of using a large binary value (128 bits is typical) which combines
the hardware address, machine time, and a naming convention intended to ensure the UUID will be unique across all
instances, systems, and geographic locations. This is a common technique used in industry.

2

2.2.1 Condition–Event Matrix Relationship
Each event matrix M has the following specification:

→

•

•

−

−

nknn

k

qknqn

k

n R

R

opop

opop

ECEC

ECEC

VG

VG

1

1,1,

1,11,1

,

1111

)()(

)()(

)(

)(

Equation 1 Condition-Event Matrix

CGG ∈:
Equation 2 Guard Elements

))((: 1 kECV

Equation 3 Condition Vector

[] TrueRRRRR nn →∧∧ 211 :
Equation 4 Resultant Conjunction

Each event matrix M is a matrix of event conditions and operations that are applied to those conditions. Each vector
V of conditions is gated by a guard G such that the vector is evaluated if and only if the guard evaluates to True.
Each evaluated vector has a resultant R that can be further reduced by conjunction to True. The guard is evaluated
first and if True then the vector is evaluated. Optionally the series of resultants are evaluated. If G, V, and
optionally R, evaluate to True, the action is initiated. The matrix can be sparse or dense depending on the condition
interactions in the event matrix. Conditions can be compounded by applying a Boolean operation matrix
comprehended across the event matrix. Evaluation is by vector with the result being true or false as illustrated thus:

TrueECopECopECopEC kk →−)()()()(11,1132,1121,111

Equation 5 Realization of Conditions and Operands

Where each op can have the logical meaning of AND, OR, XOR, or NOT.

In a sparse matrix only cells having conditions are evaluated, else the cell is considered logically NULL for
evaluation. If any op occurs between or adjacent to a logically NULL cell; the operation is considered NULL as well.

3

2.2.2 Spike-Event Consumers
For consumers of spike event forms the precondition matrix specification is:

TrueECE pre →∀∃)(:
Equation 6 Spike-Event Precondition

There exists some event E where all pre-conditions C on event
E result in true.

The post-condition matrix specification is:

TrueECEEATrueEC postpre →′∋′∃⇒∃∴→∃)()()(
Equation 7 Spike-Event Postcondition

There exists some pre-condition C on event E that results in
true; Therefore there exits an action A for event E which
implies that there exists some event E' such that the post-
condition on event E' is true.

2.2.3 Set-At Event Consumers
For consumers of set-at event forms the precondition matrix specification is:

tTrueECE pre ∆∀→∃)(:
Equation 8 Set-At Event Precondition

There exists some event E where the pre-condition C on event
E results in true over the sequence of all increments of time
after some initial time. The pre-condition is False during the
initial time until the time at which the condition is evaluated
for the event E.

The post-condition matrix specification is ∅ (Null). Event reset by an external source is required to change the state
of this event.

2.2.4 Transitional Event Consumers
For consumers of transitional event forms the precondition matrix specification is:

()tttTrueECE npre ∆∀∈∆∆→∃ 1)(:
Equation 9 Transitional Event Precondition

There exists some event E where the pre-condition C on event E results in true for a sequence of time that is a subset
of all time.

The post-condition matrix specification is:

TrueECETruettEATrueEC postnpre →′∋′∃⇒→∆∆•∃∴→∃)()()(1

Equation 10 Transitional Event Postcondition

There exists some pre-condition C on event E that results in
True; Therefore there exists an action A for event E resulting
in True for a sequence of time implying the existence of an
event E' such that the post-condition on event E' is true.

4

2.2.5 Event producers
Each post-condition specification in Sections 2.2.2, 2.2.3, 2.2.4 for each of the event forms are the specifications for
event producers respective to each event form.

2.3 Event Engine Components
The event engine is comprised of the following software modules:

• Event Receipt/Dispatch Object Modules
• Condition-Event Object Modules

The event receipt and dispatch modules are available from a series of message queue vendors and the internal detail
is not included in the event engine component design. Figure 4 is the top-level software block diagram showing the
user inputs, object module creation and eventual event engine executable. The shaded symbols in Figure 4 are the
modules directly used by the event engine.

User Interface

Condition-Event
Segment Files

Guard and
Condition

Preprocessor

Guard and
Condition Matrix

control Condition-Event
Source files

User Compilation
Command

C Language
Compiler

Guard and Condition
Include source files

User Variable,
Condition, and

Guard input

Condition-Event
Object Module

Event Receipt/
Dispatch Object

Modules
User Link
Command

Linker
Event Engine
Executable

Event UUID Include
Source File

Incusion into User
Application

Figure 4 Event Engine Top Level Software Block Diagram

5

2.3.1 User Interface
In order to build-up the condition-event matrix shown in Equation 1 the following screen-shots detail the how
Equation 1 is constructed.

Event Manager
File Edit View

Matrix

Test Matrix

Event Condition Matrix Name

Test_System

System Assignment

Save Cancel

Condition Vector Guard

New

Another Test Matrix

Edit

Another Test System

Figure 5 Event Manager Main Window

The Event Manager main window in Figure 5 shows the user interface after start-up for a new condition-event
matrix. The user checks the "New" box and only the Matrix Name and System Assignment name fields are active.
All other controls for the Matrix tab control are inactive. The user can choose between saving this assignment or
canceling with the "Save" or "Cancel" buttons respectively.

The event engine executable is the name assigned to the system; in Figure 5 the name of the event engine is called
"Test_System" and "Test Matrix" is the name of the condition-event matrix. All names are case sensitive. The
matrix name and vector variable are used to create the UUID name for events. This name is provides the
name-space that is used to route events from publishers to subscribers.

In Figure 6 through Figure 11, the editing function of a created event matrix for a system is accomplished by
selecting the name of the event condition matrix and system assignment from the drop-down boxes as shown in
Figure 5 and making sure the "New" box is not checked. The "Edit" button will be active and the user will have
access to the tab windows as shown in Figure 6 through Figure 11 with the appropriate data filled in from the user's
previous session with the Event Manager interface.

6

Event Manager
File Edit View

Condition Vector

Save Cancel

Matrix Guard
M: Test Matrix S: Test_System

SystemValue1 InitialCheck AND
FlowRate

Condition 3Condition 2Condition 1

7
6
5
4
3
2
1

Vector Variable

SystemValue1

InitialCheckCondition

INTEGERType1Vector

ANDOperator

Size 4 Apply

Cancel

Figure 6 Condition Vector Tab

In Figure 6 a great deal of the condition-event matrix is created. Working across the screen from upper-left to lower-
right the following fields are shown. All data in the interface is an example only:

• Matrix and System name (i.e. "Test Matrix" and "Test_System")
• Vector and vector variable name (i.e. "1" and "SystemValue1")
• Type and octet2 size of vector variable (i.e. "INTEGER" and "4")
• The name of the condition and the operator (i.e. "InitialCheck" and "AND")
• The ”Apply" and "Cancel" buttons for the creation of this condition vector
• The coding area for the condition "InitialCheck"
• The tabular interface to show the user what variables and conditions have already been created.
• The "Save" and "Cancel" buttons for the condition matrix "Test Matrix" for system "Test System"

2 Eight bits. This term is used in networking, in preference to byte, because some systems use the term "byte" for
things that are not 8 bits long.

7

Event Manager
File Edit View

Condition Vector

Save Cancel

Matrix Guard
M: Test Matrix S: Test_System

SystemValue1 InitialCheck AND
FlowRate

Condition 3Condition 2Condition 1

7
6
5
4
3
2
1

Vector Variable

SystemValue1

InitialCheckCondition

INTEGERType1Vector

ANDOperator

Size 4 Apply

Cancel

switch(SystemValue1)
{

1:
return(InitialCheck_TRUE);
break;

default:
return(InitialCheck_FALSE);

}

Figure 7 Condition Vector Tab with Condition Code

Figure 7 shows the same control information as does Figure 6 with the addition of the condition logic (expressed in
the ANSI C language). The following constructs are allowed:

• IF-THEN
• IF-THEN-ELSE
• CASE-SELECT (i.e. switch). All switch statements must be inclusive of all values passed by the Guard

condition.
• The relational operators less than (<), greater than (>), equal(==), not equal (!=), less than or equal to

(<=), and greater than or equal to (>=)
• Computational (i.e. stack) variables are allowed for addition (+), sign/subtraction (-), multiplication (*), or

division (/)

No pointers or locally declared variables are allowed. Only Boolean values are allowed as return values. All return
values must be of the form <condition_name>_TRUE or <condition_name>_FALSE for conditional
computations.

Vector variable data that represents time values relies on three special time functions that ensure that the condition-
event matrix does not have to rely on user manipulated time functions. The evaluate_time() function can be used in
the Guard or Condition code. The create_time(), and get_time() functions can only be used in code external to the
event engine. The event engine system time is constant throughout evaluation of the guard and its condition vector.

int evaluate_time (<vector variable>, { BEFORE | AFTER | NOW }, <delta>)
Figure 8 Function evaluate_time()

The evaluate_time() function compares the vector variable, a UCT3 time value with millisecond precision, with the
UCT system time with the same precision from the system executing the event engine. The resultant of the function
is a Boolean value of TRUE or FALSE. The special enumeration values of BEFORE, AFTER, and NOW are used
to determine the comparison of the system time with the vector variable time. The NOW enumeration must have a
delta of zero (0.0). This ensures that the comparison is explicit. The delta value is an numerical constant that is a
positive floating point value with a precision of 1 millisecond for the number of seconds to apply to the vector
variable for the comparison. Table 1 illustrates the usage of the evalueate_time() function.

3 Coordinated Universal Time (UTC) is the international time standard. It is the current term for what was
commonly referred to as Greenwich Meridian Time (GMT). Zero (0) hours UTC is midnight in Greenwich England,
which lies on the zero longitudinal meridian.

8

Vector Variable Value
(as an ASCII string)

Comparison System Time Value
(as an ASCII string)

Delta Literal Value
(seconds)

Resultant

10:10:00.020 BEFORE 12:00:01.001 10.300 TRUE
10:10:00.020 AFTER 12:00:01.001 10.300 FALSE
10:10:00.020 NOW 10:10:00.020 0 TRUE
10:10:00.020 NOW 10:10:00.021 0 FALSE

Table 1 Example of evaluate_time()
void create_time (*<vector variable>)

Figure 9 Function create_time()

The create_time() function is passed a pointer to the user supplied variable to hold the UCT time.

char* get_time (<vector variable>)
Figure 10 Function get_time()

The get_time() function is used to examine the time value set in the create_time() function. The format of the
character string returned is "HHHH:MM:SS.DDD" where:

HHHH are hours
MM are minutes
SS are seconds
DDD are milliseconds

Assignments to vector variables are allowed. The user is restricted to one and only one condition assignment in a
vector. That assignment occurs after all conditions are evaluated in the vector and if and only if the vector evaluates
to TRUE. Each vector variable can be used once and only once in a single event matrix. Vector variables can be
used in multiple event matrices. Chaining of event matrices ensures that the event value is modified in a
deterministic method, without race conditions, and that the event and its value is propagated through-out the system
of condition-event matrices resulting in a final event consumption. If a user causes race conditions by having
multiple matrices modify a vector variable in parallel, an error window will list the conflict. These restrictions
ensure that each condition-event matrix will execute in the same sequence given the same event sequence and event
values.

Event Manager
File Edit View

Guard

Save Cancel

Matrix Condition Vector
M: Test Matrix S: Test_System

SystemValue1 InitialCheck1G
FlowRate

Guard

7
6
5
4
3
2
1

Vector Variable

SystemValue1

InitialCheck1GGuard

INTEGERType1Vector Size 4 Apply

Cancel

if(SystemValue1 <= 10 && SystemValue1 > 0)
{

return (InitialCheck1G_TRUE);
}
else
{

return (InitialCheck1G_FALSE);
}

TRANSITIONALEvent Type

Figure 11 Guard Tab

Figure 11 shows the logic for the vector Guard creation. A guard may be a condition previously designed and
entered into the user interface. The name of the condition is the value used to identify it. In Figure 11, the guard is

9

uniquely named for clarity of the example. Note that the system will check that the guard variable matches the
vector variable to ensure consistency.

The new fields shown are:

• Guard name and event type (i.e. "InitialCheck1G" and "TRANSITIONAL")

The choice of SPIKE, SET-AT, or TRANSITIONAL event type is done for the guard to allow state memory of the
prior event. The state memory of a guard is an internal value, unpublished and unavailable to application programs.
The internal state of a guard, if violated invalidates the guard resulting in a FALSE for the vector. This ensures
intended event form integrity.

2.3.2 Error Window
If any referential check produces an error, a pop-up text window dialog box appears, as in Figure 12 telling the user
of the error and what they should do to correct the error. This error window is active for all functions of the Event
Manager. The user can print the error messages to their default printer or cancel the window. A user knows that
their condition-event matrix is referentially correct when the Error Window displays "No errors for Matrix or
System." The referential check is initiated by any Apply or Save button actions on the part of the user.

Event Manager: Error Window

Condition Vector:
 SystemValue1 must be an integer value to be used in
 a switch() statement in V:1, M:Test_Matrix, S:Test_System.
Guard:
 FlowRate has no guard in V:2, M:Test_Matrix, S:Test_System.

Cancel Print

Figure 12 Event Manager Error Window

2.3.3 Guard and Condition Preprocessor
The Guard and Condition Preprocessor takes input from the user and compares it to the internal storage to apply
object name and data signature referential checking to ensure that the variable, matrix, and system information is
consistent with the current context that the user is working in. In Figure 13 the flow of processing is shown.

Window
Interface

Window
Control

Existing
Matrix

Condition-Event
Segment Files

Open Yes

User Input

Internal
Storage

Read Matrix
for System

file

ReadNo, Initialize
Internal
storage

Read
Data

Input/Editing

Write Matrix
for System

file
Save

Read

Write

Guard/
Condition

Preprocessor

Update

Figure 13 Guard and Condition Preprocessor

10

The user does manual input using the windows interface. The windows interface control program handles all button,
slider, tab control requests. All data input is passed to the vector/guard preprocessor routine that applies referential
checks against input data, current working data (held in internal storage) and with data that has previously been input
from a prior session. If all data is consistent, as determined by the vector/guard preprocessor, the condition-event
segment files are written to the file system. If data is inconsistent, annotated comments are added to the condition-
event segment files indicating the inconsistency as shown in the partial file fragment in Figure 14.
/*

**--Condition Vector:
**-- SystemValue1 must be an integer value to be used in
**-- a switch() statement in V:1, M:Test_Matrix, S:Test_System.
**--Guard:
**-- FlowRate has no guard in V:2, M:Test_Matrix, S:Test_System.
*/

Figure 14 Annotated Comments

The special text "**--" is a signal to the data store read function that an inconsistency exist from a prior session and
that the data contained in the condition-event segment file must be displayed with the error window as shown in
Figure 12. The internal storage contains an optimized data structure of the condition/vector and inconsistency data.

A hash4 value is also written to the file to prevent accidental of intentional modification of the file. This has the form
of annotated comments followed by the "Hash:" marker and a hexadecimal value between "<" and ">" characters.

/*
**++ Hash: <hexadecimal value>
*/

Figure 15 Hash Comments

Hashing functions are commercially available and are used internally to the preprocessor.

2.3.4 Guard and Condition Matrix Control
The condition-event segment files are inserted into standardized event matrix control code. The flow of processing
is shown in Figure 16.

Window
Interface

Window
Control Condition-Event

Segment Files

Generate

User Input

Read
Segment file Read

Write
Condition-

Event Source
Files

Guard/
Condition

Matrix Control

Condition-Event
Source Files

Write

Event UUID Include
Source File

Write

Figure 16 Guard and Condition Matrix Control

As each of the segments are of a uniform construction the insertion of the segment files into the event-matrix control
code is a mechanical process. As the segment files are correct by construction as shown in prior sections of this
document, the processing shown in Figure 17 contains only success case logic for processing of the Write Condition-
Event Source Files module shown in Figure 16.

4 Hash: Hashing is the transformation of a string of characters into a shorter fixed-length value, or key, that
represents the original string.

11

Condition-Event
Segment Files

Start
Read

Segment
Files

Parse and
Accumulate
Segment file

Data

Segment files
exist for this

system?

Read

Internal
Storage

Data

Read
New

Segment File

Yes

Store

Build Guard
switch() statement.

Include Guard
code

Vector
Exists

Guard
Exists

Process
Guard/Vector

Data

Yes

Build Boolean operation
Vector and include

Segment code
Yes

No

No

End

Begin to
Assemble

Internal
StorageWrite

Assemble
Event UUIDs
Source, and

Event Receipt
Code

Condition-Event
Source File

Completed

Write

Write
Source File

No

Write

Event UUID Include
Source File

Figure 17 Write Condition-Event Source Files Module

2.3.5 Guard and Condition Include Files
The include files needed by the Guard and Condition entries are used to hold type definitions and structure
declarations necessary for the Guard and Vector statements and associated temporary data storage for completion of
the source file generation.

These type definitions and structure declarations are supporting of the event engine creation, but can be expressed in
many standard forms and are not part of the invention.

12

3 Usage
This section gives an example usage of the invention for an organization of event systems from event design through
setup of the guard and condition variables. Figure 18 shows the notation legend for Figure 19. The following
sections detail the design, analysis and construction of the event matrices.

3.1 Design of an Example Event System

System 3/Event 1 T System 1/Event 1

Guard Variable
identified by
event system and
event name

Event Type for Guard:
"T" is Transitional
"A" is Set-At
"S" is Spike

Condition Variable
identified by event
system and event
name

Figure 18 Usage Design Notation

System 3/Event 1 T

∆ τ A

System 1/Event 1

System 1/Event 2

System 1/Event 3 System 1/Event 3S

System 1/Event 1 T

System 1/Event 2 A
System 2/Event 1

System 1/Event 3 System 1/Event 3S

System 1 System 2

System 2/Event 1 T

System 1/Event 3 S

System 3/Event 1

System 3

Figure 19 Usage Example Event System

3.2 Analysis of an Example Event System
The example event system has three event systems. The design from Figure 19 has analysis done for correct
matrices per system and detection of any race or deadlock conditions. The following tables show the analysis
leading to direct data entry in the Event Manager. The event manager would generate a UUID for each of the system
plus matrix plus variable names. The names are kept as mnemonics here for clarity and tracking to Figure 19.

From the design, the seminal event system has to be identified by the designer as the event system has to have some
initial state prior to entering its steady-state. In this organization of systems, system one is the seminal system.

Event systems can have design errors such that an event sequence is deadlocked (either at initiation or from event
interaction), exponential (commonly known as event storms), endless (event consumption error) or quiescent (event
starvation) – the latter two may be correct given the parameters of the event system organization. In this
organization of systems after an initialization which results in system three, event one being delivered to system one,
the system is endless – which is the design intent here.

13

Vector/
Matrix/
System

Guard
Variable

Event
Type Guard Condition

Condition
Variable

Event
Condition Boolean

1/1/1 S3/E1 T G1(S3/E1) S1/E1 C1(S1/E1) --
2/1/1 S1/ET A G2(S1/ET) S1/E2 C2(S1/E2) --
3/1/1 S1/E3 S C3(S1/E3) S1/E3 C3(S1/E3) --

Table 2 Example Event System 1

System 1 has three guard variables. Note guard variable S1/ET is an externally generated time value that is
consumed by event system one. The time value is used to generate an event to be consumed by system two.
Variable S1/E3 is a self-stimulating spike event so its guard is its condition and thus the generation of system one's
event three is delivered to system one as well as system two.

Vector /
Matrix/
System

Guard
Variable

Event
Type Guard Condition

Condition
Variable

Event
Condition Boolean

1/1/2 S1/E1 T G3(S1/E1) S2/E1 C4(S2/E1) AND
2/1/2 S1/E2 A G4(S1/E2) --

1/2/2 S S1/E3 C3(S1/E3) --
Table 3 Example Event System 2

System two has two matrices. Matrix one has a conjunction of S1/E1 and S1/E2 producing a new event S2/E1.
Guard four is used to verify that S1/E2 is set-at a value and that if S1/E2 is violated, S2/E1 is never generated as it
would fail the conjunction. This is an example of Equation 4 Resultant Conjunction. Matrix two is an example of a
non-self-stimulating spike event that is in fact a pass-through in event system two.

If S2/E1 had been the guard variable for matrix two, vector one, then a cascade of event matrices within an event
system would have resulted forcing the generation of the same two events (S2/E1 and S1/E3) but with an explicit
order dependency between S2/E1 and S1/E3.

Vector /
Matrix/
System

Guard
Variable

Event
Type Guard Condition

Condition
Variable

Event
Condition Boolean

1/1/3 S2/E1 T G5(S2/E1) S3/E1 C4(S3/E1) AND
2/1/3 S1/E3 S C3(S1/E3) --

Table 4 Example Event System 3

System three shows the same evaluation signature of system two, matrix one. The result is the generation of S3/E1,
which is sent to system one, thus completing the event cycle. This last event generation marks the end of the
initialization of the event system, and the beginning of the steady-state of the event system.

Thus the system is complete, quod erat demonstrandum.

14

